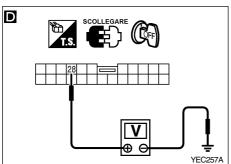

Schema elettrico

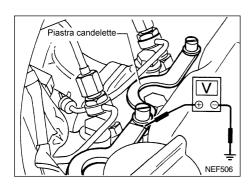
MODELLI CON GUIDA A SINISTRA EC-GLOW-01 COMMUTATORE AVVIA-MENTO ON o START BATTERIA RIFERIRSI A EL-POWER. SCATOLA FUSIBILI (J/B) 80A 10A 20A 12 32 : LINEA SOGGETTA A DTC LINEA NON SOGGETTA A DTC RELE' ECM (M825) 28 QUADRO STRUMENTI (INDICATORE LUMINOSO CANDELETTE) 5 <u>Й</u> RELE' CANDELETTE M35 , M810 , M811 3 G/W W/L 1 W/L LG 9 (M740) E142 LG G/W 107 214 221 109 325 108 GAZ-0 BAT+ BAT+ GRL-0 BAT+ (F132) CANDELETTE (E145) (F133) (F134) FARE RIFERIMENTO A QUANTO SEGUE. 3 M810 (F48)-SCATOLA FUSIBILI-1 M740 2 1 M825 5 L W (M811) (M787) SCATOLA DI GIUNZIONE (J/B) 5 M35 W E145 (F132) (F133) YEC151A

Schema elettrico (Continuazione)

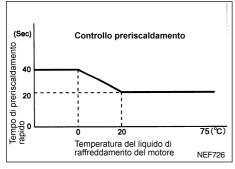
MODELLI CON GUIDA A DESTRA



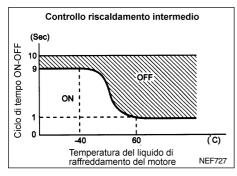

EC-393


DTC P0380 RELE CANDELETTE, DTC P0381 SPIA CANDELETTE

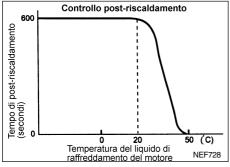
TD27Ti


Procedura di diagnosi (Continuazione)

Controllo funzionale del sistema

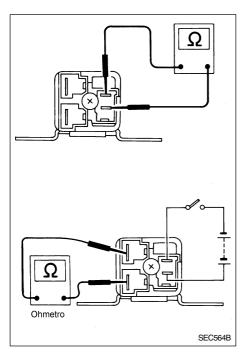

Collegare il voltmetro tra la candeletta e il corpo del motore.

- 1. Controllo preriscaldamento
- a. Portare il commutatore d'avviamento in posizione "ON".
- b. Osservare la tensione ed il tempo.


C'è continuamente tensione di batteria per circa 20* secondi dopo che il commutatore d'avviamento è stato messo in posizione "ON".

- * Temperatura liquido raffreddamento motore superiore a 20°C.
- * La ripetuta commutazione del commutatore d'avviamento tra le posizioni "ON" e "LOCK" può variare il tempo di preriscaldamento.
- 2. Controllo riscaldamento intermedio
- a. Portare il commutatore d'avviamento in posizione "LOCK". Aspettare per almeno 5 secondi.
- b. Mettere il commutatore d'avviamento in posizione "ON".

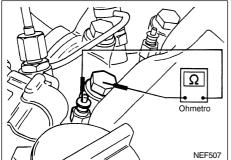
c. Leggere la tensione.

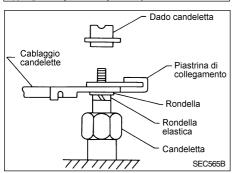

Trascorso il tempo di preriscaldamento, c'è tensione di batteria in modo intermittente per circa 60 secondi.

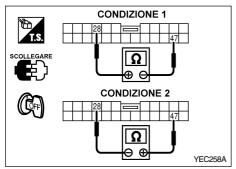
3. Controllo post-riscaldamento

Avviare il motore ed osservare la tensione ed il tempo.

C'è tensione di batteria per 10 minuti al massimo. Quando la temperatura del liquido di raffreddamento del motore è inferiore a 50°C.


RELE' CANDELETTE


 Controllare la continuità della bobina fra i terminali 1 e 2 del relè.


Deve esserci continuità.

2. Controllare il funzionamento del relè applicando la tensione di batteria tra i terminali della bobina.

Tensione bobina fra i terminali 1 e 2 del relè	Continuità fra i terminali 5 e 3 del relè
0 V	No
12V	Sì

CANDELETTE

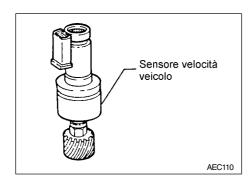
- 1. Rimuovere la piastrina di collegamento delle candelette.
- 2. Controllare la continuità di ogni candeletta.

Deve esserci continuità:

Circa 0,5 ohm (a 25°C)

- Se l'esito è NG, sostituire la candeletta.
- 3. Installare saldamente la piastrina di collegamento delle candelette.
- Non urtare l'elemento riscaldante della candeletta. Se viene urtato, sostituire la candeletta con una nuova. [Se la candeletta cade da un'altezza superiore a 10 cm, sostituirla con una nuova.]
- Se il foro d'installazione della candeletta è contaminato da depositi di carbonio, pulirlo con un alesatore o altro attrezzo idoneo.
- Serrare manualmente la candeletta avvitandola per 2 o 3 giri, quindi serrare con chiave alla coppia prescritta.

(I): 15 - 20 Nm (1,5 - 2,0 kgm)

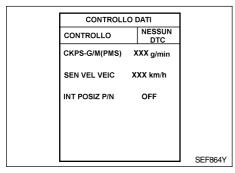

INDICATORE LUMINOSO CANDELETTE

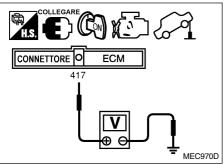
- 1. Mettere il commutatore d'avviamento in posizione "OFF".
- 2. Scollegare il connettore del cablaggio del quadro strumenti.
- Controllare la continuità tra i terminali seguenti.

Out the storm out	CONDIZIONE 1	+28	Non deve esistere continuità.
Quadro strumenti (Indicatore luminoso		-47	
candelette)	CONDIZIONE 2	-28	Deve esserci continuità.
	CONDIZIONEZ	+47	

Se l'esito è NG, riparare o sostituire il quadro strumenti (Indicatore luminoso candelette).

Riferirsi alla sezione EL.




Descrizione dei componenti SENSORE VELOCITA' VEICOLO (VSS)

Il sensore velocità veicolo è installato nel quadro strumenti. Esso contiene un generatore di impulsi che fornisce al tachimetro il segnale di velocità del veicolo. Il tachimetro invia quindi un segnale all'ECM.

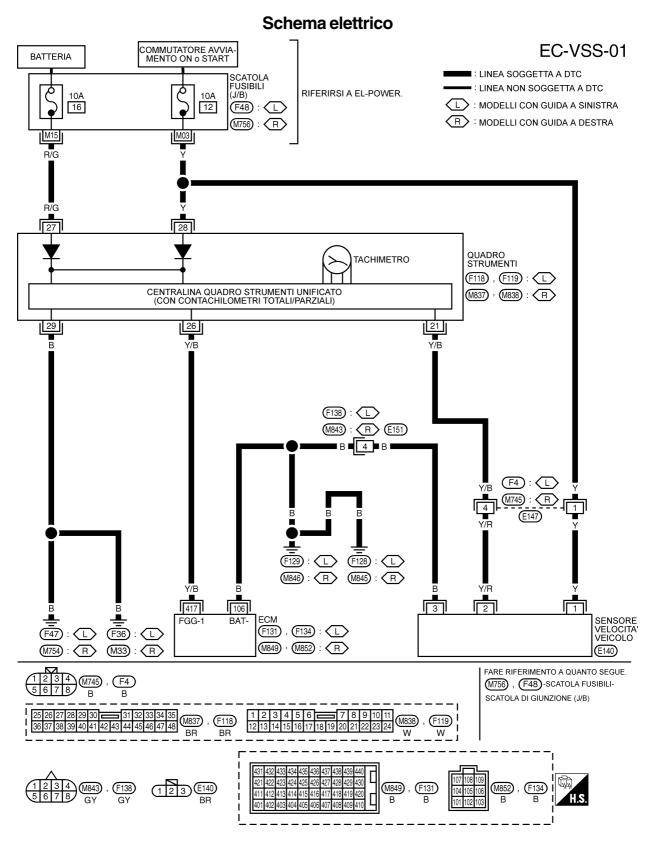
Logica della diagnosi di bordo

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P0500 0104	Il segnale trasmesso all'ECM dal sensore velocità veicolo è prossimo a 0 km/h anche quando il veicolo è in marcia.	Cablaggio o connettori (Il circuito del sensore velocità veicolo è aperto o in corto.) Sensore velocità veicolo

Controllo funzionale generale

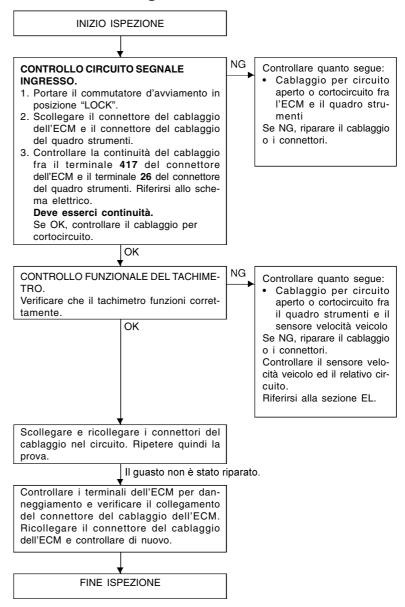
Usare questa procedura per il controllo funzionale generale del circuito del sensore velocità veicolo. Durante questo controllo è possibile che il DTC non possa essere confermato.

CON CONSULT-II


- 1) Sollevare le ruote motrici.
- 2) Accendere il motore.
- 3) Leggere il segnale del sensore velocità veicolo in modalità "CONTROLLO DATI" con CONSULT-II.

La velocità del veicolo indicata su CONSULT-II deve essere superiore a 10 km/h quando si fanno girare le ruote con il cambio in posizione appropriata.

SENZA CONSULT-II


- 1) Sollevare le ruote motrici.
- 2) Far girare le ruote motrici con le mani.
- Controllare la tensione tra il terminale 417 del connettore dell'ECM e la massa carrozzeria con il tester.

La tensione deve variare tra 0 circa e la tensione di batteria.

YEC147A

Procedura di diagnosi

Descrizione dei componenti INTERRUTTORE FRENO

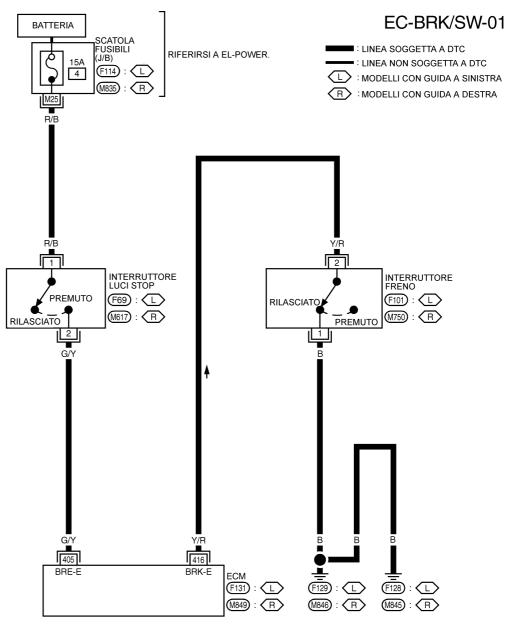
L'ECM riceve i segnali da due interruttori freno. Uno è l'interruttore luci stop convenzionale, l'altro si riferisce all'interruttore freno 2 ridondante.

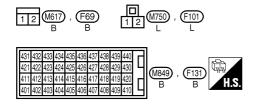
Nel caso il pedale dell'acceleratore non tornasse alla posizione di minimo (il pedale si blocca), il conducente reagisce premendo il pedale del freno. In questa situazione (di emergenza), l'ECM trascura il segnale del pedale dell'acceleratore e riporta il regime del motore a 1.200 giri/min.

Logica della diagnosi di bordo

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P0571 0807	I circuiti degli interruttori freno sono aperti o in cortocircuito.	 Cablaggio o connettori (Circuiti degli interruttori freno aperti o in corto.) Interruttore luci stop Interruttore freno 2

Procedura di conferma DTC

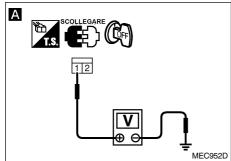

(P) CON CONSULT-II

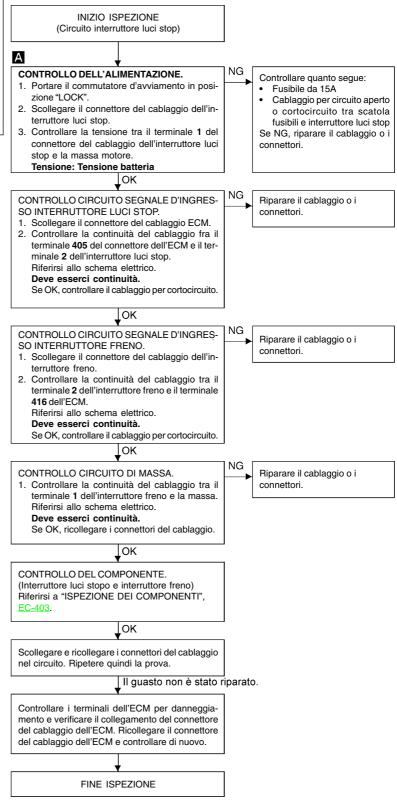

- 1) Mettere il commutatore d'avviamento in posizione "ON" e selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 2) Premere il pedale del freno per almeno 1 minuto.

⋈ SENZA CONSULT-II

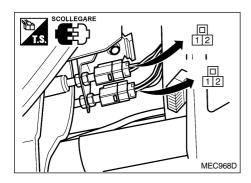
- 1) Portare il commutatore d'avviamento in posizione "ON".
- 2) Premere il pedale del freno per almeno 1 minuto.
- Mettere il commutatore d'avviamento in posizione "LOCK", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON".
- 4) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".

Schema elettrico




FARE RIFERIMENTO A QUANTO SEGUE.

(M835), (F114) -SCATOLA FUSIBILISCATOLA DI GIUNZIONE (J/B)


YEC148A

Procedura di diagnosi

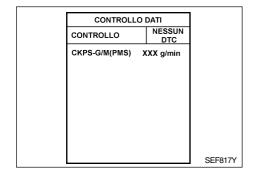
DTC P0571 INT FRENO

Ispezione dei componenti INTERRUTTORE LUCI STOP E INTERRUTTORE FRENO 2

- 1. Portare il commutatore d'avviamento in posizione "LOCK".
- 2. Scollegare i connettori degli interruttori.
- 3. Controllare la continuità tra i terminali 1 e 2.

Continuità:

Pedale del freno	Interruttore luci stop	Interruttore freno 2	
Rilasciato	No	No	
Premuto	Sì	Sì	


Se l'esito è NG, sostituire l'interruttore luci stop o l'interruttore freno.

Descrizione dei componenti

L'indicatore di avaria (MI) è ubicato sul quadro strumenti. MI si accende quando il commutatore d'avviamento viene portato in posizione ON senza accendere il motore. Questo per controllare l'efficienza della lampadina. Una volta acceso il motore, MI deve spegnersi. Se MI rimane acceso significa che il sistema di diagnosi di bordo ha rilevato qualche malfunzionamento correlato al sistema di controllo del motore.

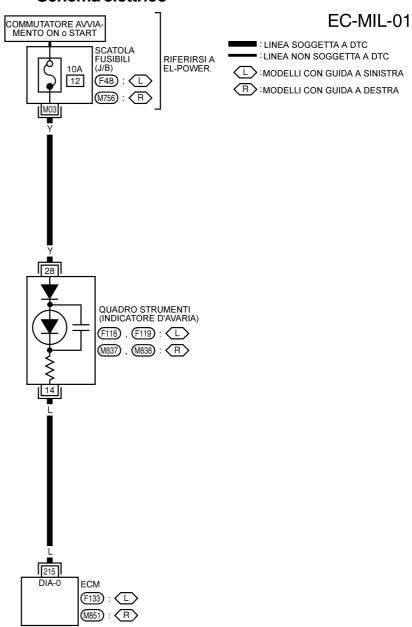
Logica della diagnosi di bordo

N° DTC	Oggetto della diagnosi	Condizione di rilevamento del DTC	Probabile causa
P0650 0907	Circuito di controllo indicato- re d'avaria (MI) malfunzionante	 La tensione trasmesso all'ECM attraverso il circuito MI in presenza delle condizioni di accensione dell'indicatore stesso è troppo alta. La tensione trasmessa all'ECM attraverso il circuito MI in presenza delle condizioni di non accensione dell'indicatore stesso è troppo bassa. 	 Cablaggio o connettori (Il circuito di MI è aperto o in cortocircuito). M

Procedura di conferma DTC

NOTA:

Se in precedenza è stata eseguita la "Procedura di conferma DTC", portare il commutatore d'avviamento in posizione "OFF" e aspettare almeno 10 secondi prima di eseguire la prova successiva.

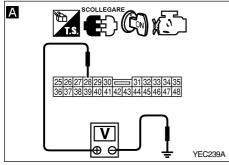

(P) CON CONSULT-II

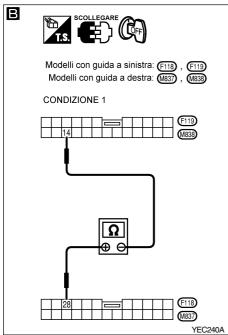

- 1. Mettere il commutatore d'avviamento in posizione "ON".
- 2. Selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 3. Avviare il motore e farlo girare al minimo per 2 secondi.

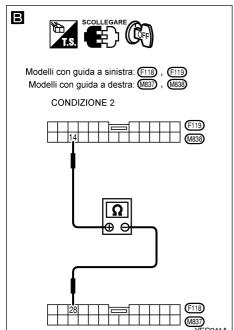
⊗ SENZA CONSULT-II

- 1. Mettere il commutatore d'avviamento in posizione "ON".
- 2. Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".
- 3. Avviare il motore e farlo girare al minimo per 2 secondi.
- 4. Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".

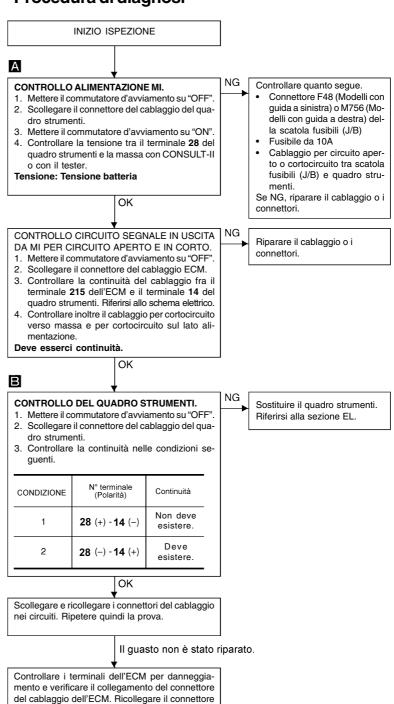
Schema elettrico

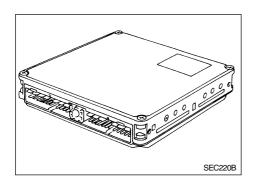





FARE RIFERIMENTO A QUANTO SEGUE.

(M756) , (F48) -SCATOLA FUSIBILISCATOLA DI GIUNZIONE (J/B)

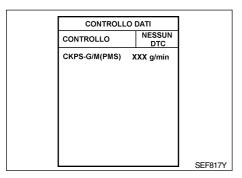

YEC249A


Procedura di diagnosi

del cablaggio dell'ECM e controllare di nuovo.

FINE ISPEZIONE

DTC P1107 ECM 10



Descrizione

L'ECM è costituito da un microcomputer e dai connettori per i segnali in ingresso e in uscita e per l'alimentazione. L'ECM controlla il motore.

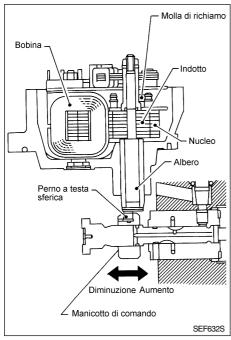
Logica della diagnosi di bordo

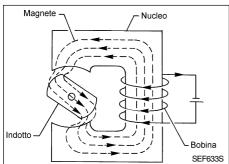
DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1107 0802	L'ECM riceve dal sensore pressione assoluta (incorporato nell'ECM stesso) una tensione eccessivamente alta o eccessivamente bassa.	• ECM

Procedura di conferma DTC

(R) CON CONSULT-II

- 1) Mettere il commutatore d'avviamento in posizione "ON".
- 2) Selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 2) Accendere il motore ed aspettare per almeno 3 secondi.


⋈ SENZA CONSULT-II


- 1) Mettere il commutatore d'avviamento in posizione "ON" ed aspettare per almeno 2 secondi.
- 2) Accendere il motore ed aspettare per almeno 2 secondi.
- 3) Mettere il commutatore d'avviamento in posizione "OFF", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON".
- 4) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)" con l'ECM.

Procedura di diagnosi

DTC P1206 RITORNO INIEZIONE2

Descrizione dei componenti REGOLATORE ELETTRICO

Il regolatore elettrico è incorporato nella pompa d'iniezione. Esso muove il manicotto di comando per aumentare o ridurre la quantità di carburante iniettato.

Quando la corrente attraversa la bobina, viene generata una forza magnetica che fa girare l'indotto. L'albero dell'indotto è collegato al manicotto di comando mediante una spina cilindrica che è posta in modo eccentrico rispetto all'albero medesimo. In questo modo, è possibile muovere il manicotto di comando in funzione della rotazione dell'indotto.

L'angolo di rotazione dell'indotto viene determinato dal bilanciamento della forza magnetica (generata dal flusso di corrente regolato dall'ECM) e dalla tensione della molla di richiamo (collegata all'indotto). Maggiore è il flusso di corrente che attraversa la bobina, maggiore è l'angolo di rotazione dell'indotto. Questo significa che il manicotto di comando si muove verso destra, aumentando la quantità di carburante iniettato.

L'ECM regola il flusso di corrente che attraversa la bobina, variando il rapporto del ciclo di lavoro che comanda il funzionamento ON/ OFF del circuito di collegamento a massa del regolatore elettrico.

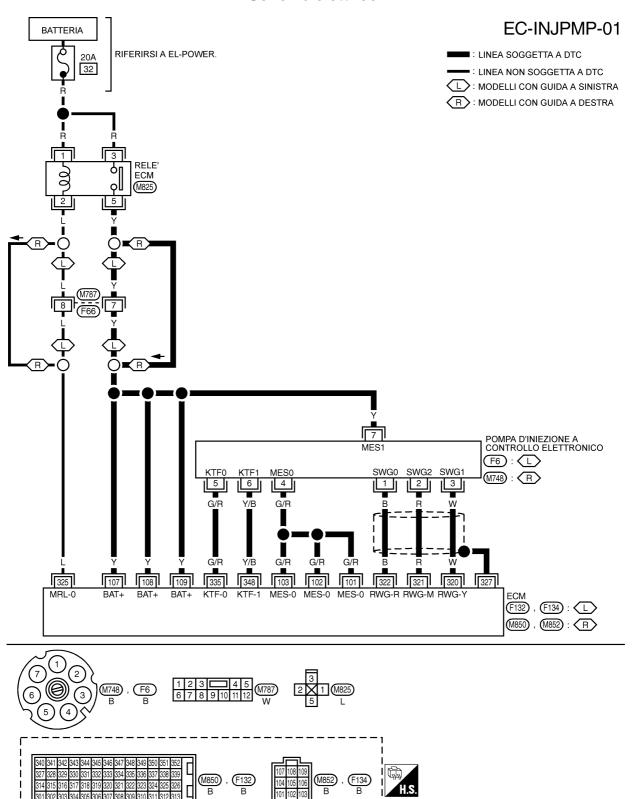
Logica della diagnosi di bordo

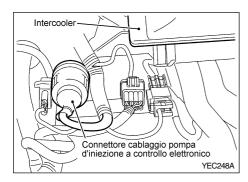
DTC	II malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1206 0108	Il sistema retroattivo dell'iniezione non funziona a dovere. [Questo sistema è composto sostanzialmente dall'ECM, dal regolatore elettrico e dal sensore posizione manicotto di comando.]	Circuito di alimentazione principale Cablaggio o connettori (Circuito regolatore elettrico e sensore posizione manicotto di comando) Regolatore elettrico ECM

Procedura di conferma DTC

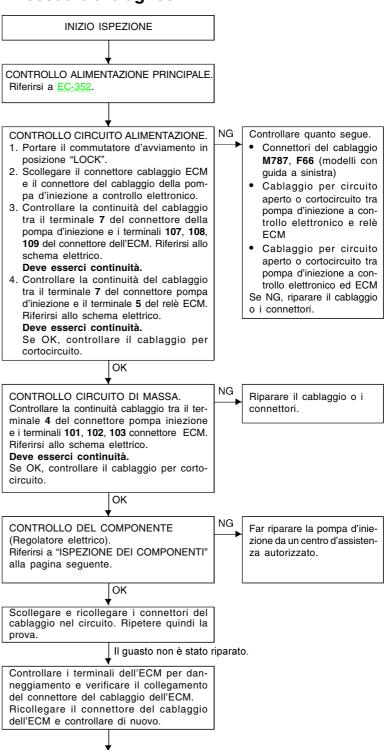
(P) CON CONSULT-II

- 1) Mettere il commutatore d'avviamento in posizione "ON" e selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 2) Accendere il motore.
- 3) Lasciarlo funzionare per almeno 2 secondi a più di 1.200 giri/min. Riportare il motore al regime di minimo.

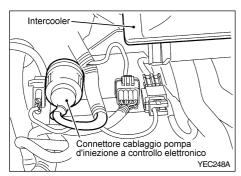

⋈ SENZA CONSULT-II

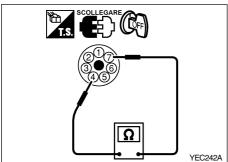

- 1) Accendere il motore.
- 2) Lasciar funzionare il motore per almeno 2 secondi a più di 1.200 giri/min. Riportare il motore al regime di minimo.
- Mettere il commutatore d'avviamento in posizione "LOCK", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON"
- 4) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".

NOTA:


Se il problema si manifesta in modo intermittente, effettuare lo schema dei connotati di guida appropriato per 10 minuti. Questo permette di determinare il DTC.

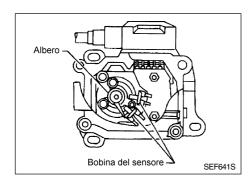
Schema elettrico





Procedura di diagnosi

FINE ISPEZIONE



Ispezione dei componenti REGOLATORE ELETTRICO

- 1. Scollegare il connettore del cablaggio della pompa d'iniezione elettronica.
- 2. Controllare la resistenza tra i terminali 4 e 7 del connettore della pompa d'iniezione.

Resistenza: Circa 1,0 ohm (a 25°C)

Se l'esito è NG, sostituire.

Descrizione dei componenti SENSORE POSIZIONE MANICOTTO DI COMANDO (CSPS)

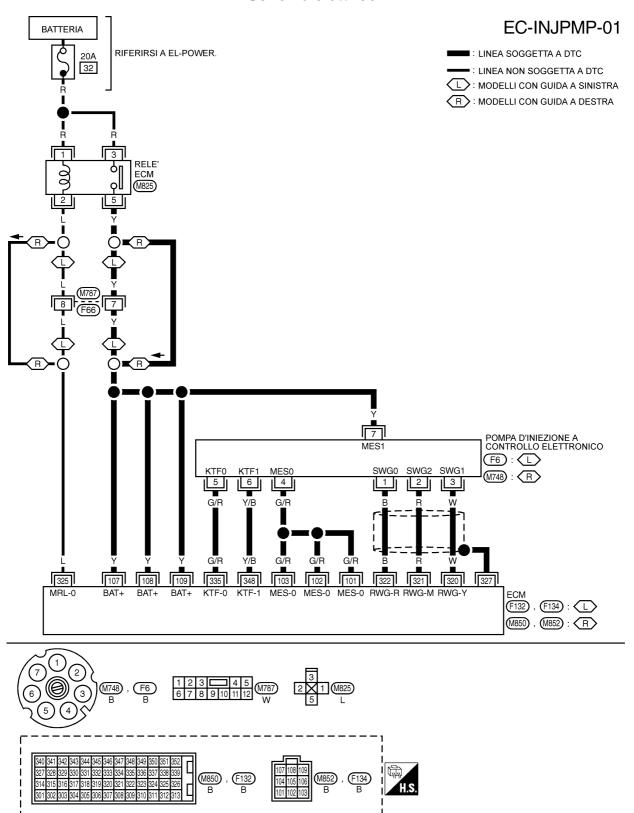
Il sensore posizione manicotto di comando è installato sul regolatore elettrico.

Esso rileva e trasmette all'ECM la posizione del manicotto di comando (angolo dell'indotto) mentre il manicotto viene azionato dal regolatore elettrico.

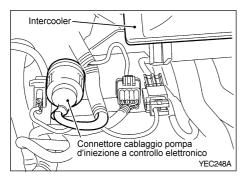
Logica della diagnosi di bordo

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1207 0105	La tensione del sensore rilevata dall'ECM è eccessivamente alta o eccessivamente bassa. L'ECM rileva un segnale improprio dal sensore mentre il motore è in funzione.	Cablaggio o connettori (Il circuito del sensore posizione manicotto di comando è aperto o in corto). Sensore posizione manicotto di comando

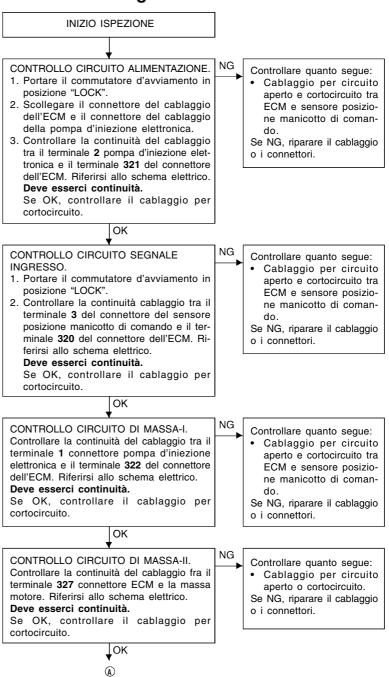
Procedura di conferma DTC

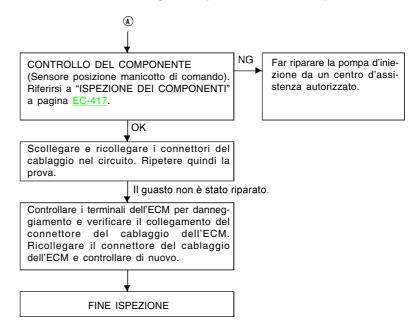

(CON CONSULT-II

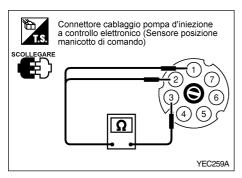
- 1) Mettere il commutatore d'avviamento in posizione "ON" e selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 2) Avviare il motore e lasciarlo funzionare al minimo per almeno 2 secondi.


SENZA CONSULT-II

- 1) Avviare il motore e lasciarlo funzionare al minimo per almeno 2 secondi.
- Mettere il commutatore d'avviamento in posizione "LOCK", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON".
- 3) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".


Schema elettrico


YEC149A



Procedura di diagnosi

Procedura di diagnosi (Continuazione)

Ispezione dei componenti

SENSORE POSIZIONE MANICOTTO DI COMANDO

- 1. Scollegare il connettore del cablaggio di sensore posizione manicotto di comando e regolatore elettrico.
- Controllare la continuità fra i terminali 1 e 3, 2 e 3.
 Resistenza: Circa 6,1 ohm (a 25°C)
 Se ci sono anomalie, seguire le opportune procedure.

DTC P1217 SURRISCALDAMENTO

Descrizione

DESCRIZIONE DEL SISTEMA

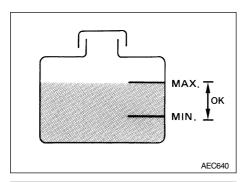
Sensore	Segnale in ingresso all'ECM	Funzioni ECM	Attuatore
Sensore temperatura liquido raffreddamento motore	Temperatura del liquido di raffreddamento del motore	Controllo ventilatore	Relè ventilatore radiatore
Interruttore condizionatore aria	Segnale condizionatore aria "ON"	Vontinatoro radiatoro	radiatoro

L'ECM controlla il ventilatore del radiatore in funzione della velocità del veicolo, della temperatura del liquido di raffreddamento del motore e del segnale di attuazione del condizionatore aria.

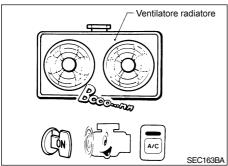
Logica della diagnosi di bordo

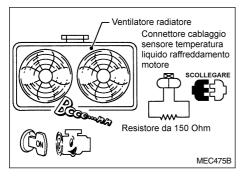
Questa diagnosi controlla in continuazione la temperatura del liquido di raffreddamento del motore.

Se il ventilatore del radiatore o un altro componente del sistema di raffreddamento è malfunzionante, la temperatura del liquido di raffreddamento del motore aumenta.


Quando la temperatura del liquido di raffreddamento del motore raggiunge un elevato valore anomalo, viene indicata una condizione di malfunzionamento.

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1217 0208	 II ventilatore del radiatore non funziona a dovere (Surriscaldamento). II sistema del ventilatore radiatore non funziona a dovere (Surriscaldamento). II liquido di raffreddamento del motore non è stato introdotto correttamente. 	 Cablaggio o connettori (Il circuito del ventilatore radiatore è aperto o in cortocircuito). Ventilatore radiatore Manicotto del radiatore Radiatore Tappo radiatore Pompa dell'acqua Termostato Sensore temperatura liquido raffreddamento motore Per ulteriori informazioni, riferirsi a "LE 12 PRINCIPALI CAUSE DI SURRISCALDAMENTO", EC-425.


AVVERTENZA:


Quando viene indicato un malfunzionamento, avere cura di sostituire il liquido di raffreddamento seguendo la procedura della sezione LC, "Sostituzione liquido raffreddamento motore". Sostituire anche l'olio motore.

- Introdurre il liquido di raffreddamento nel radiatore versandone 2 litri al minuto fino a raggiungere il livello prescritto. Avere cura di usare un liquido di raffreddamento miscelato correttamente. Riferirsi alla sezione MA, "Rapporto di miscela del liquido di raffreddamento motore".
- 2) Dopo aver immesso il liquido di raffreddamento, far funzionare il motore per assicurarsi che non si senta rumore di acqua in circolazione.

Controllo funzionale generale

Usare questa procedura per il controllo funzionale generale del ventilatore del radiatore. Durante questo controllo è possibile che il DTC possa non essere confermato.

ATTENZIONE:

Non rimuovere mai il tappo del radiatore a motore caldo. Potreste rimanere seriamente ustionati dal getto di fluido altamente pressurizzato in uscita dal radiatore.

Avvolgere uno straccio spesso attorno al tappo. Usando la massima cautela, allentare il tappo di un quarto di giro e lasciar sfogare la pressione. Allentare quindi il tappo completamente e rimuoverlo.

CON CONSULT-II

 Controllare il livello del liquido di raffreddamento nel serbatoio di espansione e nel radiatore.

Lasciar raffreddare il motore prima di controllare il livello del liquido di raffreddamento.

Se il livello del liquido di raffreddamento nel serbatoio d'espansione e/o nel radiatore è inferiore alla norma, saltare i passi seguenti e andare alla "Procedura di diagnosi", <u>EC-421</u>.

- 2) Accertarsi se il proprietario del veicolo ha effettuato rabbocchi del liquido di raffreddamento. Se il cliente ha rabboccato il liquido di raffreddamento, saltare i seguenti passi e andare alla "Procedura di diagnosi", <u>EC-421</u>.
- Mettere il commutatore d'avviamento in posizione "ON".
- 4) Eseguire "VENTOLA RAFFREDDAMENTO" in modalità "PRO-VA ATTIVA" con CONSULT-II ed assicurarsi che i ventilatori del radiatore entrino in funzione.

Se l'esito è NG, andare alla "Procedura di diagnosi", EC-421.

R SENZA CONSULT-II

 Controllare il livello del liquido di raffreddamento nel serbatoio di espansione e nel radiatore.

Lasciar raffreddare il motore prima di controllare il livello del liquido di raffreddamento.

Se il livello del liquido di raffreddamento nel serbatoio d'espansione e/o nel radiatore è inferiore alla norma, saltare i passi seguenti e andare alla "Procedura di diagnosi", <u>EC-421</u>.

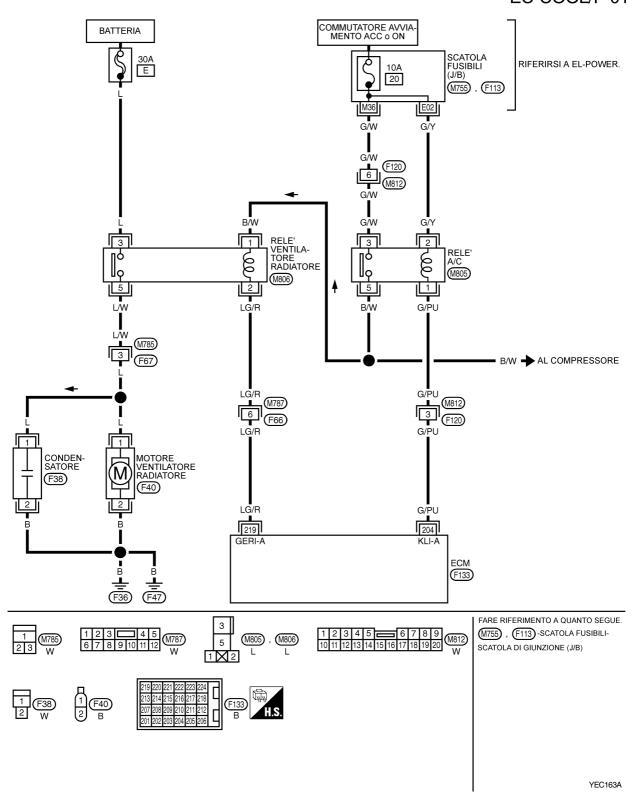
- 2) Accertarsi se il proprietario del veicolo ha effettuato rabbocchi del liquido di raffreddamento. In tal caso, saltare i seguenti passi e andare alla "Procedura di diagnosi", <u>EC-421</u>.
- 3) Accendere il motore.

Fare attenzione a non surriscaldare il motore.

- Posizionare la leva regolazione temperatura su freddo massimo.
- 5) Mettere l'interruttore del condizionatore d'aria in posizione "ON".
- Mettere l'interruttore del ventilatore in posizione "ON".
- Far funzionare il motore al minimo per qualche minuto con il condizionatore acceso.

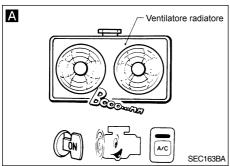
Fare attenzione a non surriscaldare il motore.

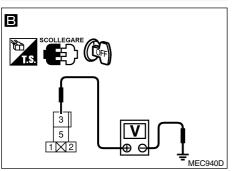
- 8) Verificare che i ventilatori radiatore funzionino a bassa velocità.
- 9) Mettere il commutatore d'avviamento in posizione "OFF".
- 10) Disinserire gli interruttori di condizionatore aria e ventilatore.
- 11) Scollegare il connettore del cablaggio del sensore temperatura liquido raffreddamento motore.
- 12) Collegare un resistore da 150 ohm al connettore del cablaggio del sensore temperatura liquido raffreddamento motore.
- 13) Avviare il motore e verificare che i ventilatori del radiatore girino ad una velocità superiore rispetto a quella bassa.


Fare attenzione a non surriscaldare il motore.

14) Se l'esito è NG, andare alla "Procedura di diagnosi", EC-421.

Schema elettrico


MODELLI CON GUIDA A SINISTRA


EC-COOL/F-01

DTC P1217 SURRISCALDAMENTO

Procedura di diagnosi

CONTROLLO CIRCUITO ALIMENTAZIONE
RELE' VENTILATORE RADIATORE.

1. Mettere il commutatore d'avviamento in posizione "OFF".

2. Scollegare il relè ventilatore radiatore.

NG

peratura sulla posizione freddo massimo. 3. Mettere l'interruttore del condizionatore

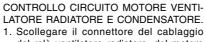
4. Mettere l'interruttore ventilatore su "ON".5. Assicurarsi che il ventilatore del radiato-

d'aria in posizione "ON".

re funzioni.

Scollegare il relè ventilatore radiatore.
 Controllare la tensione tra il terminale 3
 del relè ventilatore radiatore e la massa

del relè ventilatore radiatore e la massa usando CONSULT-II o il tester.


OK

Tensione: Tensione batteria

Controllare quanto segue.

- Fusibile da 30A
- Cablaggio per circuito aperto o cortocircuito fra il relè del ventilatore radiatore e la batteria

Se NG, riparare o sostituire il cablaggio o il fusibile.

 Scollegare il connettore del cablaggio del relè ventilatore radiatore, del motore ventilatore radiatore e del condensatore.
 Controllare la continuità nel seguente

modo.

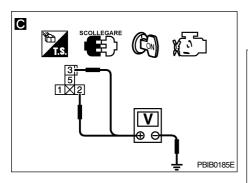
Riferirsi allo schema elettrico.

Terminale 5 relè ventilatore radiatore e terminale 1 motore ventilatore radiatore

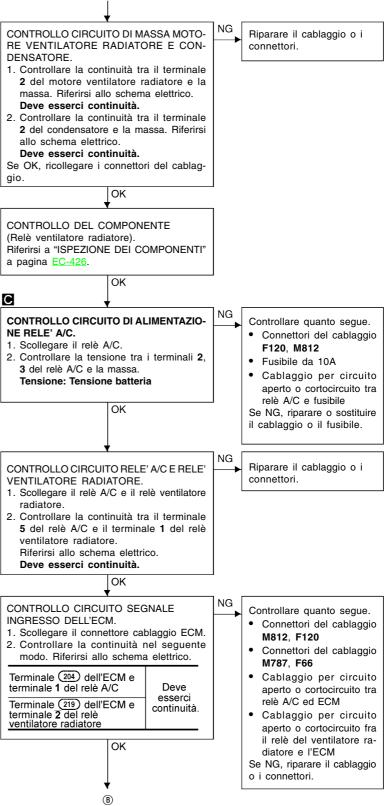
Terminale 5 relè ventilatore radiatore radiatore e terminale 1 condensatore

Deve esserci continuità.

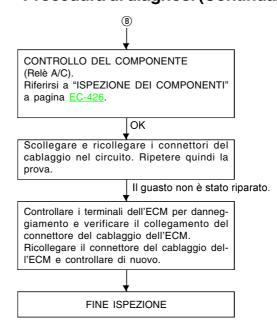
Controllare quanto segue.


• Connettori del cablaggio

NG

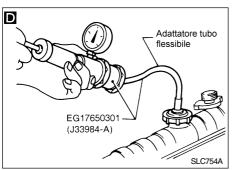

- M785, F67Cablaggio per circuito aperto o cortocircuito fra
- aperto o cortocircuito fra il relè e il motore del ventilatore radiatore
 Cablaggio per circuito

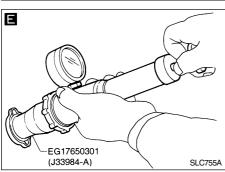
aperto o cortocircuito fra il relè del ventilatore radiatore e il condensatore Se NG, riparare il cablaggio

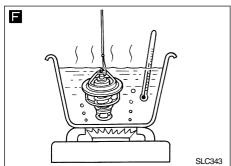

Se NG, riparare il cablagg o i connettori.

Procedura di diagnosi (Continuazione)

Procedura di diagnosi (Continuazione)


Sostituire il sensore tempe-


ratura liquido raffreddamen-


to motore.

NG

DTC P1217 SURRISCALDAMENTO

Procedura di diagnosi (Continuazione)

d'apertura. Per i dettagli, riferirsi alla sezione LC ("Termostato").

valvola a temperatura ambiente.
Deve essere saldamente in sede.
2. Controllare la temperatura d'apertura e

Temperatura d'apertura valvola: 76,5°C [standard]

Superiore a 10 mm/90°C
3. Controllare se la valvola si chiude ad una temperatura di 5°C inferiore a quella

l'alzata della valvola.

Alzata valvola:

raffreddamento motore.
Riferirsi a "ISPEZIONE DEI COMPONENTI",
EC-364.

OK

Se non si riesce a trovare la causa, andare a "LE 12 PRINCIPALI CAUSE DI SURRISCAL-DAMENTO", EC-425.

FINE ISPEZIONE

OK

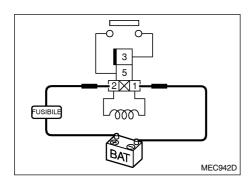
Controllare il sensore temperatura liquido

DTC P1217 SURRISCALDAMENTO

Le 12 principali cause di surriscaldamento

Motore	Passo	Oggetto dell'ispezione	Attrezzatura	Condizione	Riferimenti
OFF	1	Radiatore ostruitoGriglia del radiatore ostruitaParaurti ostruito	• Ispezione visiva	Non devono esserci ostruzioni	_
	2	Miscela del liquido di raffreddamento	Tester per liquido di raffreddamento	Rapporto 50 - 50%	Vedere sezione MA, "FLUIDI E LUBRIFICANTI RACCOMANDATI".
	3	 Livello del liquido di raffreddamento 	• Ispezione visiva	Il liquido di raffreddamento deve essere a livello MAX nel serba- toio d'espansione e a livello del collo del bocchettone di rifornimento nel radiatore	Vedere sezione LC, "Sostituzione liquido raffreddamento motore".
	4	Tappo radiatore	 Tester della pressione 	78 - 98 kPa (0,78 - 0,98 bar, 0,8 - 1,0 kg/cm ²)	Vedere sezione LC, "Controllo del sistema".
ON*2	5	 Perdite di liquido di raffreddamento 	• Ispezione visiva	Non ci devono essere perdite	Vedere sezione LC, "Controllo del sistema"
ON*2	6	Termostato	 Toccare i manicotti superiore ed inferiore del radiatore 	Entrambi i manicotti devono essere caldi	Vedere sezione LC, ""Termostato" e "Radiatore".
ON*1	7	Ventilatore radiatore	CONSULT-II	Funzionante	Riferirsi alla diagnosi dei guasti del DTC P1217, EC-418.
OFF	8	Perdite di gas combusto	Analizzatore chimico per il colore dei gas	Negativa	_
ON*3	9	Termometro del liquido di raffreddamento	• Ispezione visiva	Durante la guida il termometro deve rimanere sotto i 3/4	_
		 Traboccamento di liquido di raffreddamento verso il serbatoio d'espansione 	• Ispezione visiva	Non ci deve essere traboccamento né durante la guida nè con motore al minimo	Vedere sezione LC, "Sostituzione liquido raffreddamento motore".
OFF*4	10	Riflusso di liquido di raffreddamento dal serbatoio d'espansione al radiatore	• Ispezione visiva	II livello nel serbatoio d'espansione deve rimanere quello iniziale	Vedere sezione LC, "RIEMPIMENTO LIQUIDO RAFFREDDAMENTO MOTORE".
OFF	11	• Testata	Guardapiano e spessimetro	Deformazione massima (svergolamento) non superiore a 0,1 mm	Vedere sezione EM, "Ispezione".
	12	Blocco cilindri e pistoni	• Ispezione visiva	Le pareti dei cilindri ed i pistoni devono essere esenti da rigature	Vedere sezione EM, "Ispezione".

^{*1:} Mettere il commutatore d'avviamento in posizione ON.


*3: Guidare a 90 km/h per 30 minuti e quindi far girare il motore al minimo per 10 minuti.

*4: Dopo averlo lasciato raffreddare per 60 minuti.

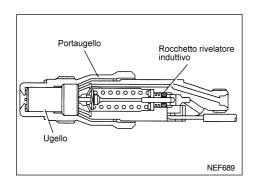
Per ulteriori informazioni riferirsi alla sezione LC, "ANALISI DELLE CAUSE DEL SURRISCALDAMENTO".

^{*2:} Motore a regime di 3.000 giri/min per 10 minuti.

DTC P1217 SURRISCALDAMENTO

Ispezione dei componenti

RELE' VENTILATORE RADIATORE E RELE' A/C


- 1. Mettere il commutatore d'avviamento in posizione OFF.
- 2. Scollegare il relè ventilatore radiatore e il relè A/C.
- 3. Controllare la continuità tra i terminali 3 e 5 di ciascun relè nelle condizioni seguenti.

Applicare 12Vcc tra i terminali 1 e 2 del relè.	Deve esserci continuità.
Nessuna tensione applicata.	Non deve esistere continuità.

 Se l'esito è NG, sostituire il relè ventilatore radiatore e/o il relè A/C.

DTC P1240 SEN ALZATA INIETT, DTC P1242 SEN ALZ INIE (GIRI)

TD27Ti

Descrizione dei componenti SENSORE ALZATA SPILLO (NLS)

Il sensore alzata spillo è integrato nell'iniettore $N^{\circ}1$. Il suo rocchetto induttivo rileva la fasatura dell'iniezione. Questa viene inviata all'ECM come fasatura d'iniezione effettiva, sotto forma di segnale pulsante, per il calcolo del regime motore secondario.

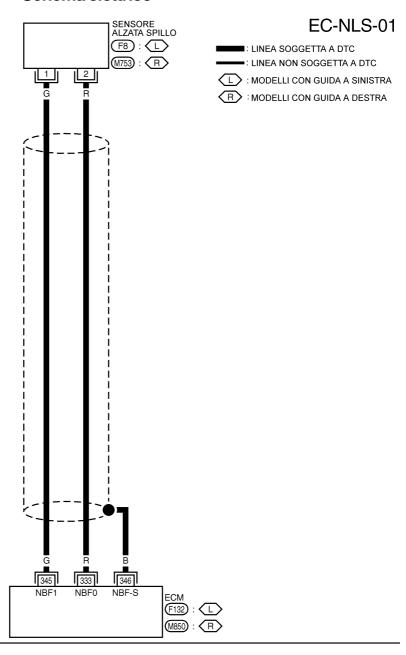
Logica della diagnosi di bordo

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1240 0304 P1242	L'ECM riceve un segnale non corretto dal sensore.	Cablaggio o connettori (Il circuito del sensore è aperto o in corto). Sensore alzata spillo
0906		

Procedura di conferma DTC

NOTA:

Prima di eseguire la procedura di conferma del DTC, verificare che la tensione della batteria sia superiore a 9V.

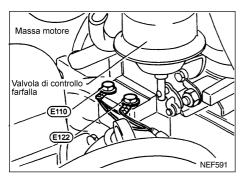

© CON CONSULT-II

- 1) Mettere il commutatore d'avviamento in posizione "ON" e selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- Accendere il motore.
- Lasciarlo funzionare per almeno 2 secondi a più di 1.200 giri/ min.

⋈ SENZA CONSULT-II

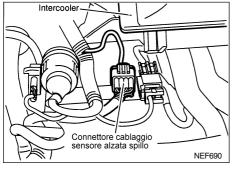
- 1) Accendere il motore.
- Lasciarlo funzionare per almeno 2 secondi a più di 1.200 giri/ min
- Mettere il commutatore d'avviamento in posizione "LOCK", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON".
- 4) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".

Schema elettrico



DTC P1240 SEN ALZATA INIETT, DTC P1242 SEN ALZ INIE

TD27Ti


Procedura di diagnosi

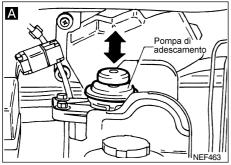
INIZIO ISPEZIONE

Α

CONTROLLO PER PRESENZA D'ARIA NEL FILTRO CARBURANTE.

- 1. Spurgare l'aria dal filtro carburante muovendo su e giù la pompa di adescamento.
- 2. Eseguire la "PROCEDURA DI CONFER-MA DEL CODICE DI GUASTO".

CONTROLLO CIRCUITO SEGNALE INGRESSO.


- 1. Portare il commutatore d'avviamento in posizione "LOCK".
- 2. Scollegare il connettore del cablaggio dell'ECM e il connettore del cablaggio del sensore alzata spillo.
- 3. Controllare la continuità cablaggio tra il terminale 1 del connettore sensore alzata spillo e il terminale 345 del connettore dell'ECM. Riferirsi allo schema elettrico. Deve esserci continuità.

Se OK, controllare il cablaggio per cortocircuito.

Controllare quanto segue:

• Cablaggio per circuito aperto tra sensore alzata spillo ed ECM

Se NG, riparare il cablaggio o i connettori.

↓ok

CONTROLLO CIRCUITO DI MASSA-I. Controllare la continuità del cablaggio tra il terminale 2 del connettore del sensore alzata spillo e il terminale 333 del connettore dell'ECM. Riferirsi allo schema elettrico.

Deve esserci continuità.

Se OK, controllare il cablaggio per cortocircuito.

Controllare quanto segue:

 Cablaggio per circuito aperto e cortocircuito tra ECM e sensore alzata spil-

Se NG, riparare il cablaggio o i connettori.

CONTROLLO CIRCUITO DI MASSA-II. Controllare la resistenza tra il terminale 346 del connettore dell'ECM e la massa motore. Riferirsi allo schema elettrico.

Deve esserci continuità.

Se OK, controllare il cablaggio per cortocircuito.

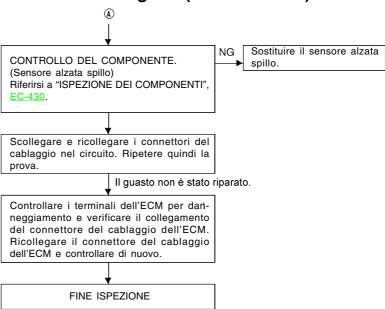
Controllare quanto segue:

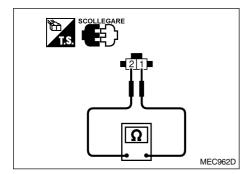
• Cablaggio per circuito aperto fra l'ECM e la massa motore

Se NG, riparare il cablaggio o i connettori.

CONTROLLO INIETTORE Nº 1 PER OCCLU-SIONE

Riferirsi al controllo della caratteristica di spruzzo di "INIETTORE".


Se NG, sostituire l'iniettore N° 1.

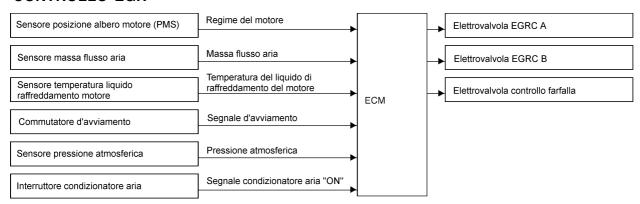


(GIRI)

TD27Ti

Procedura di diagnosi (Continuazione)

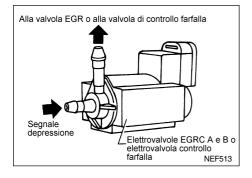
Ispezione dei componenti SENSORE ALZATA SPILLO


- Scollegare il connettore del cablaggio del sensore alzata spillo.
- 2. Controllare la resistenza tra i terminali 1 e 2 del sensore alzata spillo.

Resistenza: Circa 105 ohm (a 25°C)

Se l'esito è NG, sostituire il sensore alzata spillo con il portaugello dell'iniettore.

Descrizione del sistema


CONTROLLO EGR

L'ECM riceve i segnali trasmessi dal sensore temperatura liquido raffreddamento motore, dal sensore posizione albero motore (PMS), dal commutatore d'avviamento, ecc., per determinare il regime del motore e le condizioni di funzionamento. Basandosi su questi segnali, l'ECM controlla il funzionamento dell'elettrovalvola EGRC (A e B) ed il funzionamento dell'elettrovalvola della farfalla.

Il controllo dell'EGR viene interrotto quando la temperatura del liquido di raffreddamento del motore è inferiore a 45°C, al minmo, all'avviamento e quando i segnali dei componenti del sistema e del regime del motore sono anomali.

Temperatura del liquido di	Carico	Elettrovalvola EGRC		Elettrovalvola controllo	Valvola	Valvola	Volume
raffreddamento del motore °C A B		farfalla	EGR	di controllo farfalla	gas di ricircolo		
Inferiore a 45	Qualsiasi	OFF (Chiusa)	OFF (Chiusa)	OFF (Chiusa)	Completamente chiusa	Completamente aperta	-
Superiore a 45	Carico basso	ON (Aperta)	ON (Aperta)	ON (Aperta)	Completamente aperta	Chiusa	Grande
	Carico medio-1	ON (Aperta)	ON (Aperta)	OFF (Chiusa)	Completamente aperta	Completamente aperta	Medio
	Carico medio-2	ON (Aperta)	OFF (Chiusa)	OFF (Chiusa)	Aperta a metà	Completamente aperta	Piccolo
	Carico elevato	OFF (Chiusa)	OFF (Chiusa)	OFF (Chiusa)	Completamente chiusa	Completamente aperta	_

Descrizione dei componenti

Le elettrovalvole EGRC A e B regolano la depressione che agisce sulla valvola EGR. La valvola di controllo EGR viene aperta completamente, aperta a metà o chiusa completamente secondo necessità.

L'elettrovalvola controllo farfalla regola la depressione che agisce sulla valvola di controllo farfalla. Pertanto, i condotti dell'aria vengono aperti o chiusi in funzione dei gas di scarico e dell'aria aspirata. Mediante la correlazione tra la pressione dei gas di scarico ed il controllo della pressione dell'aria aspirata, il volume dell'EGR (ricircolo gas di scarico) viene regolato in tre misure indicative: grande, medio e piccolo.

DTC P1404 EV A CONTROLLO EGR, DTC P1405 EV B CONTROLLO EGR/P1407 ELETTROVALVOLA FARFALLA

TD27Ti

Logica della diagnosi di bordo

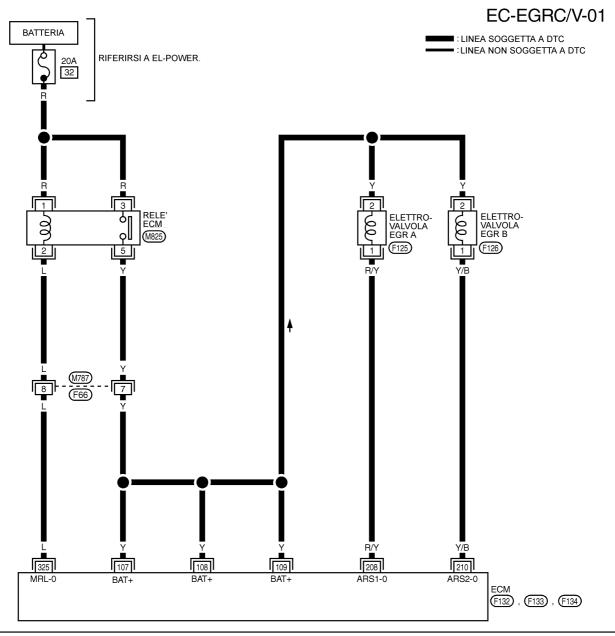
DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1404 0806	Il circuito dell'elettrovalvola EGRC A è aperto o in corto.	Cablaggio o connettori (Circuito elettrovalvola EGRC A aperto o in corto.) Elettrovalvola EGRC A
P1405 0808	Il circuito dell'elettrovalvola EGRC B è aperto o in corto.	Cablaggio o connettori (Circuito elettrovalvola EGRC B aperto o in corto.) Elettrovalvola EGRC B
P1407 0808	Il circuito dell'elettrovalvola controllo farfalla è aperto o in corto.	Cablaggio o connettori (Circuito elettrovalvola controllo farfalla aperto o in corto.) Elettrovalvola controllo farfalla

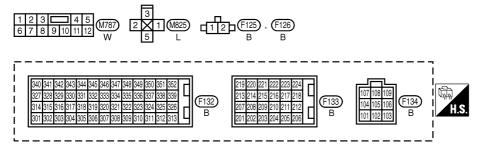
Procedura di conferma DTC

CON CONSULT-II

- 1) Portare il commutatore d'avviamento in posizione "ON".
- 2) Selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 3) Aspettare per almeno 2 secondi.

⊗ SENZA CONSULT-II

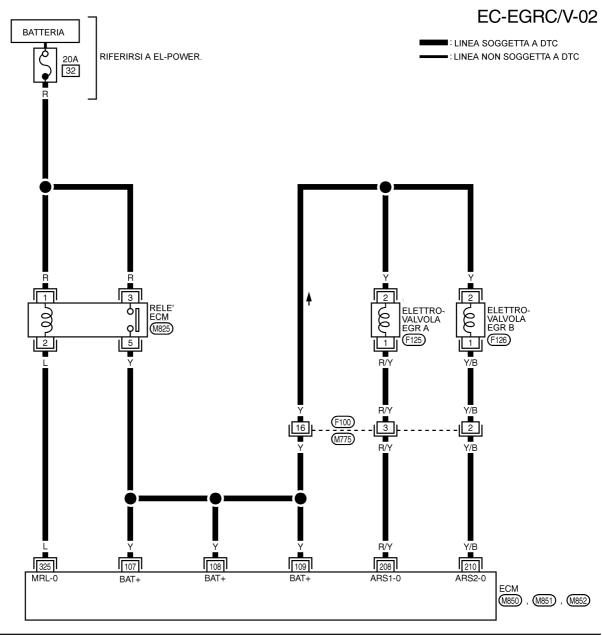

- 1) Mettere il commutatore d'avviamento in posizione "ON" ed aspettare per almeno 2 secondi.
- Mettere il commutatore d'avviamento in posizione "LOCK", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON"
- 3) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".

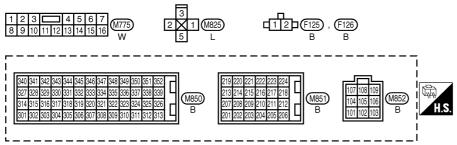

TD27Ti

Schema elettrico

MODELLI CON GUIDA A SINISTRA

Elettrovalvola controllo EGR A e B

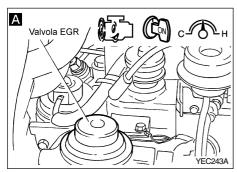



YEC159A

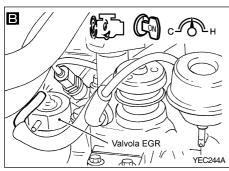
Schema elettrico (Continuazione)

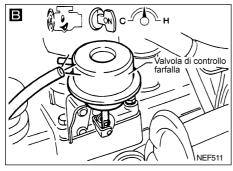
MODELLI CON GUIDA A DESTRA

Elettrovalvola controllo EGR A e B


YEC160A

Schema elettrico (Continuazione)


Elettrovalvola controllo farfalla EC-THLCNT-01 BATTERIA : LINEA SOGGETTA A DTC : LINEA NON SOGGETTA A DTC RIFERIRSI A EL-POWER. 20A 32 L : MODELLI CON GUIDA A SINISTRA R : MODELLI CON GUIDA A DESTRA ELETTROVALVOLA CONTROLLO FARFALLA (F124) ()**≭**(R) B 107 109 108 (F132), (F133), (F134): (L) (M850), (M851), (M852): (R)


YEC161A

FINE ISPEZIONE

Valvola di confrollo rarfalla

Procedura di diagnosi CONTROLLO EGR

INIZIO ISPEZIONE

OK

CONTROLLO FUNZIONALE GENERALE.

- 1. Avviare il motore e lasciare che si scaldi.
- 2. Eseguire la modalità di controllo diagnosi II (Esiti autodiagnosi).

Assicurarsi che venga visualizzato il codice di guasto P0000 (0505).

 Verificare che la molla della valvola EGR si muova su e giù (toccare con il dito) nelle seguenti condizioni.

Con motore al minimo:

La molla non si muove.

Accelerando il regime del motore dal minimo a 3.000 giri/min:

La molla si muove su e giù.

 Verificare che l'asta della valvola controllo farfalla si muova su e giù nelle seguenti condizioni.

Con motore al minimo:

L'asta non si muove.

Accelerando il regime del motore dal minimo a 3.000 giri/min:

L'asta si muove su e giù.

B

CONTROLLO FONTI DEPRESSIONE DI VAL-VOLA EGR E VALVOLA CONTROLLO FAR-FALLA.

- Scollegare il tubo flessibile della depressione dalla valvola EGR e dalla valvola di controllo farfalla.
- 2. Verificare la presenza di depressione nelle seguenti condizioni.

Con motore al minimo:

Deve esserci depressione. Accelerando il regime del motore dal minimo a 3.000 giri/min:

Non deve esserci depressione.

√NG (A) OK CONTROLLO DEI COMPONENTI

(Valvola EGR e valvola controllo farfalla).

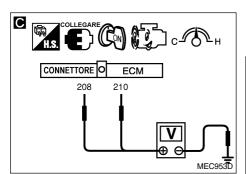
(Vedi pagina EC-439.)

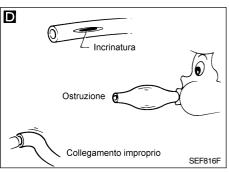
Sostituire i componenti malfunzionanti.

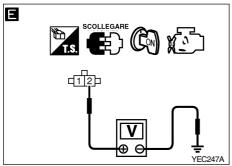
DTC P1404 EV A CONTROLLO EGR, DTC P1405 EV B CONTROLLO EGR/P1407 ELETTROVALVOLA FARFALLA

TD27Ti

CONTROLLO TUBO FLES-


SIBILE DELLA DEPRES-


Controllare il tubo flessibile


della depressione per occlu-

sione, incrinature o collega-

mento improprio.

Procedura di diagnosi (Continuazione)

D

SIONE.

OK

CONTROLLO FUNZIONALE.

(A)

(P) Con CONSULT-II

- Portare il commutatore d'avviamento in posizione "ON".
- Eccitare e diseccitare le elettrovalvole EGRC A e B e l'elettrovalvola controllo farfalla in modalità "PROVA ATTIVA" con CONSULT-II, e controllare se si sente il rumore di funzionamento.

Senza CONSULT-II

Controllare la tensione fra i terminali
 208, 210 del connettore dell'ECM e la
 massa motore con il tester nelle condizioni seguenti.

Tensione:

Con motore al minimo:

Circa 0,4V

Regime del motore superiore a 3.000 giri/min:

Tensione batteria

 Controllare la tensione tra il terminale 1 del connettore dell'ECM e la massa motore con il tester nelle condizioni seguenti.

Tensione:

Ε

Con motore al minimo:

Circa 0,4V

Regime del motore superiore a 2.400 giri/min:

Tensione batteria

NG

CONTROLLO ALIMENTAZIONE-I.

- Portare il commutatore d'avviamento in posizione "LOCK".
- 2. Scollegare il connettore del cablaggio dell'elettrovalvola EGRC A e B.
- 3. Portare il commutatore d'avviamento in posizione "ON".
- Controllare la tensione tra il terminale 2 delle elettrovalvole EGRC A e B e la massa motore con CONSULT-II o con il tester.

OK

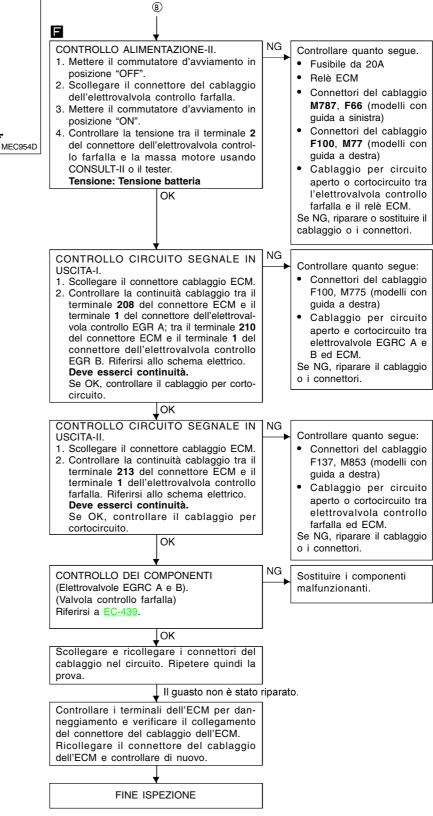
Tensione: Tensione batteria

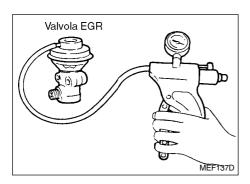
Controllare quanto segue:

• Fusibile da 20A

NG

- Condizione e funzionamento del commutatore d'avviamento
- Connettori del cablaggio M787, F66 (modelli con guida a sinistra)
- Connettori del cablaggio F100, M775 (modelli con guida a destra)
- Relè ECM
- Cablaggio per circuito aperto e cortocircuito tra elettrovalvole EGRC A e B e fusibile.

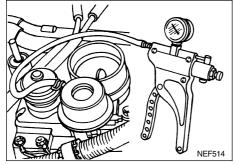

Se NG, sostituire il fusibile o riparare il commutatore d'avviamento, il cablaggio o i connettori.


DTC P1404 EV A CONTROLLO EGR, DTC P1405 EV B CONTROLLO EGR/P1407 ELETTROVALVOLA FARFALLA

TD27Ti

SCOLLEGARE CONTINUE OF THE PROPERTY OF THE PRO

Procedura di diagnosi (Continuazione)

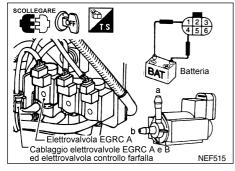

Ispezione dei componenti

VALVOLA EGR

Applicare depressione alla luce della depressione EGR con un depressore manuale.

Il diaframma della valvola EGR si deve alzare.

Se l'esito è NG, sostituire la valvola EGR.

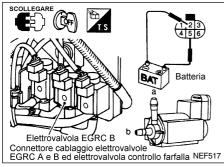


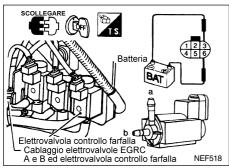
VALVOLA DI CONTROLLO FARFALLA

Applicare depressione alla luce della depressione della valvola controllo farfalla con un depressore manuale.

La valvola di controllo farfalla si deve chiudere.

Se l'esito è NG, sostituire la valvola controllo farfalla.




ELETTROVALVOLE EGRC A E B ED ELETTROVALVOLA CONTROLLO FARFALLA

Controllare la continuità del passaggio dell'aria.

Componente	Tensione applicata	Continuità passaggio aria tra le luci A e B
Elettrovalvola EGRCA	12Vcc tra i terminali 1 e 4	SI
	Nessuna alimentazione	NO
Elettrovalvola EGRC B	12Vcc tra i terminali 2 e 5	SI
255 2	Nessuna alimentazione	NO
Elettrovalvola controllo farfalla	12Vcc tra i terminali 3 e 6	SI
	Nessuna alimentazione	NO

Se l'esito è NG, sostituire le elettrovalvole EGRC A e B e l'elettrovalvola controllo farfalla.

Descrizione dei componenti

CONTROLLO ESCLUSIONE CONDIZIONATORE ARIA

Il condizionatore d'aria viene escluso nelle seguenti condizioni:

Avviamento del motore

Brusca accelerazione da bassa velocità

Abbassamento del regime di minimo

Temperatura elevata del liquido di raffreddamento del motore (superiore a 107°C)

Malfunzionamento del sensore regime motore, del sensore posizione acceleratore o del sensore velocità veicolo quando il regime del motore è inferiore a 2.100 giri/min.

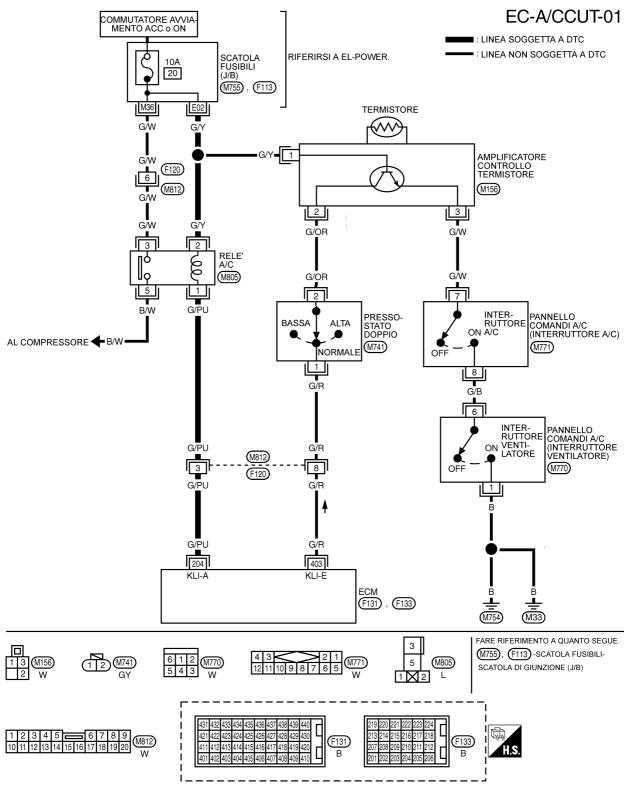
Logica della diagnosi di bordo

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1530 0805	Circuito segnale relè condizionatore aria in corto.	 Cablaggio o connettori (Il circuito del segnale del relè condizionatore aria è in cortocircuito.) Relè condizionatore aria

Procedura di conferma DTC

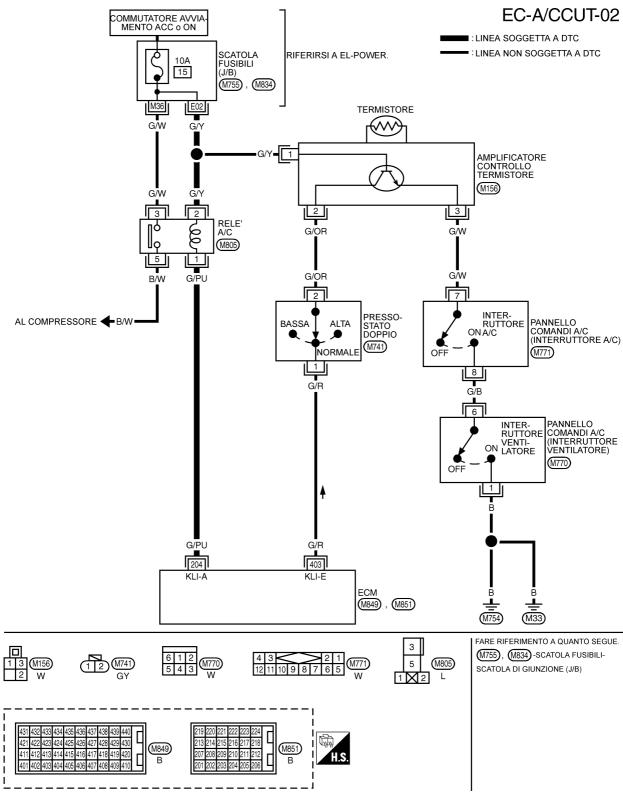
CON CONSULT-II

- 1) Mettere il commutatore d'avviamento e l'interruttore condizionatore aria in posizione "ON".
- 2) Selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 3) Aspettare per almeno 2 secondi.

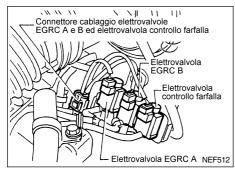

SENZA CONSULT-II

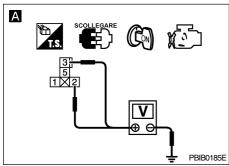
"ON".

- Mettere il commutatore d'avviamento e l'interruttore condizionatore aria in posizione "ON".
 Aspettare per almeno 2 secondi.
- 2) Mettere il commutatore d'avviamento in posizione "LOCK", aspettare per almeno 5 secondi e quindi metterlo in posizione
- 3) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)".

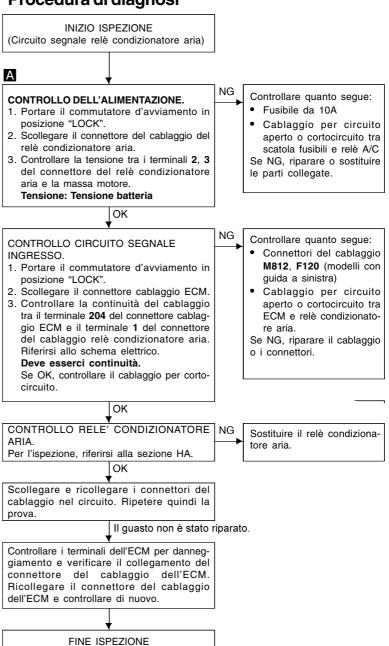

Schema elettrico

MODELLI CON GUIDA A SINISTRA

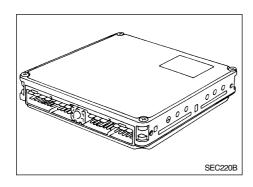



Schema elettrico (Continuazione)

MODELLI CON GUIDA A DESTRA

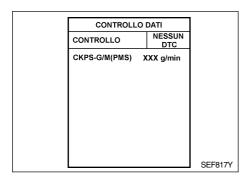


YEC155A



Procedura di diagnosi

DTC P1603 ECM 12, DTC P1607 ECM 2



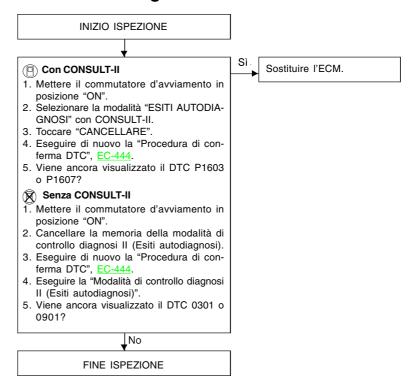
Descrizione

L'ECM è costituito da un microcomputer e dai connettori per i segnali in ingresso e in uscita e per l'alimentazione. L'ECM controlla il motore.

Logica della diagnosi di bordo

DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1603 0901	La funzione di calcolo dell'ECM è malfunzionante.	• ECM
P1607 0301		

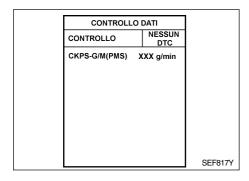
Procedura di conferma DTC


CON CONSULT-II

- 1) Mettere il commutatore d'avviamento in posizione "ON".
- 2) Selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- 2) Accendere il motore ed aspettare per almeno 3 secondi.

⊗ SENZA CONSULT-II

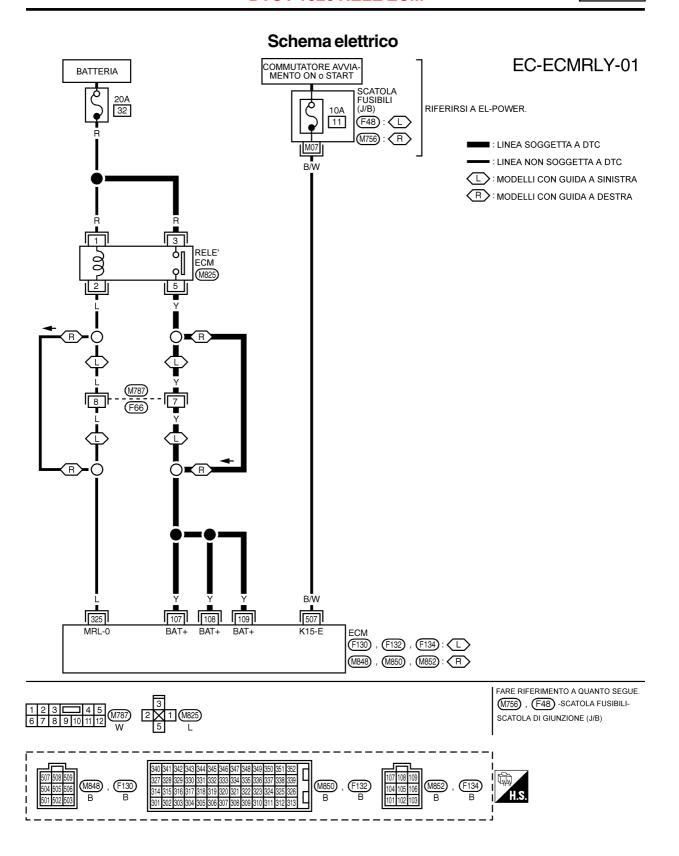
- 1) Mettere il commutatore d'avviamento in posizione "ON" ed aspettare per almeno 2 secondi.
- 2) Accendere il motore ed aspettare per almeno 2 secondi.
- 3) Mettere il commutatore d'avviamento in posizione "OFF", aspettare per almeno 5 secondi e quindi metterlo in posizione "ON".
- 4) Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)" con l'ECM.


Procedura di diagnosi

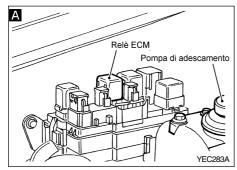
DTC P1620 RELE ECM

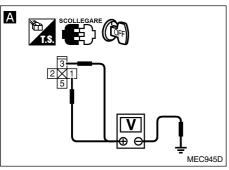
Logica della diagnosi di bordo

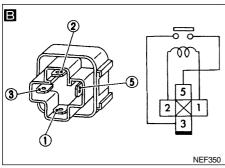
DTC	Il malfunzionamento viene rilevato quando	Elementi da controllare (Possibile causa)
P1620 0902	L'ECM riceve un segnale di tensione irregolare dal relè ECM.	Cablaggio o connettori (Il circuito del relè ECM è aperto o in cortocircuito.) Relè ECM

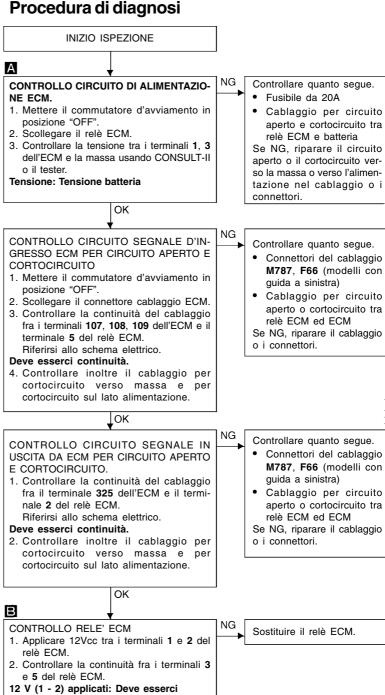

Procedura di conferma DTC

© CON CONSULT-II


- 1) Mettere il commutatore d'avviamento in posizione "ON".
- 2) Selezionare la modalità "CONTROLLO DATI" con CONSULT-II.
- Mettere il commutatore d'avviamento in posizione "OFF", aspettare per almeno 20 secondi e quindi metterlo in posizione "ON".

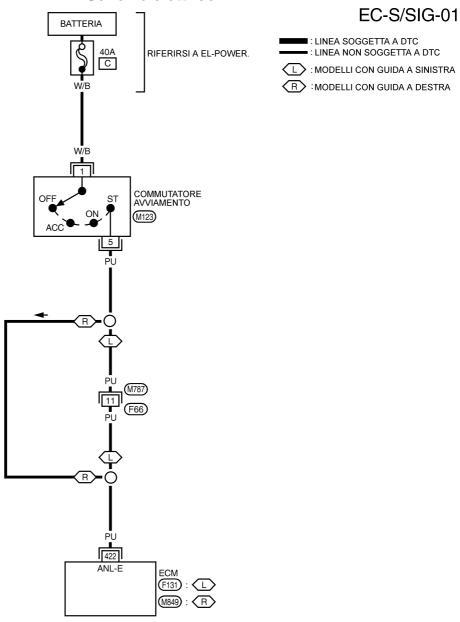

SENZA CONSULT-II


- 1) Mettere il commutatore d'avviamento in posizione "ON".
- Mettere il commutatore d'avviamento in posizione "OFF", aspettare per almeno 20 secondi e quindi metterlo in posizione "ON".
- Eseguire la "Modalità di controllo diagnosi II (Esiti autodiagnosi)" con l'ECM.

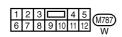

YEC250A

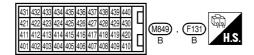
Procedura di diagnosi

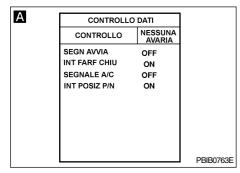
continuità

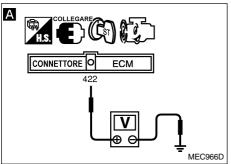

continuità

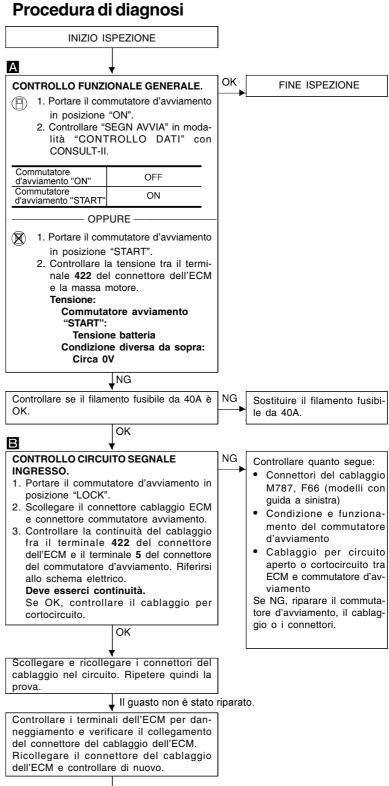
OK Controllare i terminali dell'ECM per danneggiamento e verificare il collegamento del connettore del cablaggio dell'ECM.

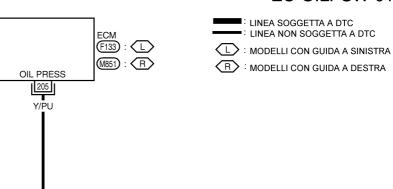

FINE ISPEZIONE

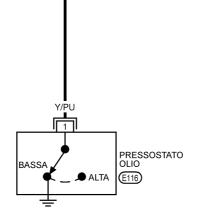

Nessuna tensione applicata: Non c'è


Schema elettrico







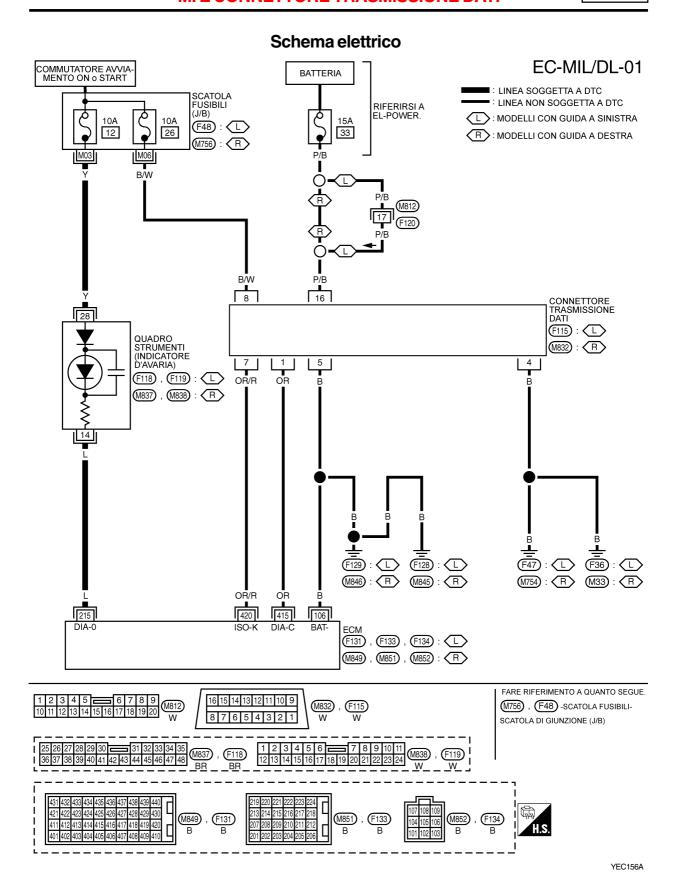


FINE ISPEZIONE

Schema elettrico

EC-OILPSW-01

F138 : L


Y/PU (M843) : R

Specifiche generali

Regime del motore

	Unita: giri/min
Motore	TD27Ti
Regime minimo	725
A/C: ON	845
Regime massimo del motore	5.500

Codici pompa

Motore	Codice	Codice gruppo pompa
TD27Ti	16700 7F410	104701-2032 RNP11

I dati della pompa non sono ancora disponibili. Riferirsi a STANDARD DI CALIBRAZIONE pubblicato da BOSCH.

Iniettore

ISPEZIONE E REGOLAZIONE

Iniettore

Unità: kPa (bar, kg/cm²)

1.1-142 - -1-1/--1--

Pressione d'iniezione iniziale	
Nuovo	12.749 - 13.730 (127,5 - 137,3, 130 - 140)
Usato	12.259 - 12.749 (122,6 - 127,5, 120 - 135)

Ispezione e regolazione

Alzata pistoncino al PMS	mm	0,275 ± 0,02
Regime minimo (Posizione "P" o "N")	giri/min	725 ±25

SENSORE MASSA FLUSSO ARIA

Tensione di alimentazione	V	Circa 5
Tensione di uscita	V	1,5 - 2,7*

^{*:} Motore a temperatura d'esercizio normale e al minimo in assenza di carico.

SENSORE TEMPERATURA LIQUIDO RAFFREDDAMENTO MOTORE

Temperatura °C	Resistenza kohm
20	2,1 - 2,9
50	0,68 - 1,00
90	0,236 - 0,260

SENSORE POSIZIONE MANICOTTO DI COMANDO

Resistenza (a 25°C) ohm	Circa 6,1

VALVOLA CONTROLLO FASATURA INIEZIONE

Resistenza (a 25°C) ohm	Circa 15

SENSORE ALZATA SPILLO

Resistenza (a 25°C) ohm	Circa 105
-------------------------	-----------

SENSORE POSIZIONE ALBERO MOTORE (PMS)

Resistenza (a 25°C) ohm	Circa 900
CANDELETTE	
Resistenza (a 25°C) ohm	0,5

SENSORE POSIZIONE ACCELERATORE

Condizione valvola a farfalla	Resistenza kohm (a 25°C)
Completamente chiusa	Circa 1,2
Parzialmente aperta	1,2 - 1,9
Completamente aperta	Circa 1,9

SENSORE TEMPERATURA CARBURANTE

Temperatura °C	Resistenza kohm
25	Circa 1,9

NOTE